Stochastic Phase Dynamics in Turbulent Regimes

Some thoughts toward a unified model

P.H. Diamond

With: Z.B. Guo, P.W. Xi, X.-Q. Xu Ackn: A. Garofalo, T. Wilks, X. Chen, K. Barada, T. Rhodes

DIII-D, June 2 2017

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Science, under Award Number DE-FG02-04ER54738.

Outline

- Some observations:
 - Proliferating zoology of QH-mode states
 - Its the cross-phase, ...
 - Questions
- Re-visiting MHD Turbulent ELM-free states:
 - Findings
 - The phase, again
- Toward a unified scenario

Some Observations

- QH states are proliferating...
 - EHO (Garofalo, et. al.)
 - Wide pedestal, turbulent (may coexist with EHO) (Burrell, Chen)
 - LCO (Barada)
- Strong ExB shear is common element to all
- Cross phase dynamics is <u>critical</u>:
 - Phase evolves, <u>dynamically</u>
 - Contrast fixed value, as familiar in QL models

Some Key Questions:

If EHO ←→ coherent phase dynamics, slips, locking then

Turbulent QH $\leftarrow \rightarrow$ <u>stochastic</u> cross phase evolution?

- $\leftarrow \rightarrow$ existing work suggests <u>yes</u>.
- How connect/unify coherent, turbulent regimes?

N.B. Easy to see that strong V'_E is beneficial in both scenarios

- I) Basic Notions
- ELM Bursts vs Turbulence:
- **Consequence of Stochastic Phase Dynamics**

→ See P.W. Xi, X.-Q. Xu, P.D.; PRL 2014 P.W. Xi, X.-Q. Xu, P.D.; PoP 2014, 2015 Z.B. Guo, P.D. PRL 2015

Model and equilibrium in BOUT++

Contrast perturbation evolution

- Single mode: Filamentary structure is generated by linear instability;
- Multiple modes: Linear mode structure is disrupted by nonlinear mode interaction and no filamentary structure appears – <u>turbulent state</u>
 - ➔ reduced tendency to penetrate outwards

→ Cross Phase Dynamics Regulates Outcome of P.-B. Evolution

Peeling-Ballooning Perturbation Amplification is set by Coherence of Cross-Phase

i.e. schematic P.B. energy equation:

$$\frac{\partial}{\partial t} E_{k} = \langle \tilde{\phi} 2 \hat{b}_{0} \times \vec{k} \cdot \nabla \tilde{P} \rangle_{\vec{k}} \qquad \sim \langle \tilde{v}_{r} \tilde{P} \rangle \Rightarrow \text{ energy release from } \nabla \langle P \rangle \\ \Rightarrow \text{ quadratic} \\ + \sum_{\vec{k}',\vec{k}''} \tau_{c\vec{k}} C(\vec{k}',\vec{k}'') E_{\vec{k}'} E_{\vec{k}''} - \sum_{\vec{k}'} \tau_{c\vec{k}+\vec{k}'} C(\vec{k}',\vec{k}) E_{\vec{k}'} E_{\vec{k}} - \text{ dissipation} \\ \text{nonlinear mode-mode} \qquad \Rightarrow \text{ quartic}$$

NL effects

- energy couplings to transfer energy (weak)
- response scattering to de-correlate $\tilde{\phi}$, \tilde{P} \rightarrow regulate <u>drive</u>

Growth Regulated by Phase Scattering

Phase coherence time sets growth

Cross Phase Exhibits Rapid Variation in Multi-Mode Case

- Single mode case →
 coherent phase set by
 linear growth → rapid
 growth to 'burst'
- Multi-mode case →
 phase de-correlated by
 mode-mode scattering
 → slow growth to
 turbulent state

Key Quantity: Phase Correlation Time

• Ala' resonance broadening (Dupree '66):

$$\frac{\partial}{\partial t}\hat{P} + \tilde{v} \cdot \nabla \tilde{P} + \langle v \rangle \cdot \nabla \hat{P} - D\nabla^{2}\hat{P} = -\tilde{v}_{r}\frac{d}{dr}\langle P \rangle$$
Nonlinear Linear streaming Ambient
scattering (i.e. shear flow) diffusion
$$\hat{P} = Ae^{i\phi} \qquad \text{Relative phase} \leftrightarrow \text{cross-phase}$$

$$\hat{P} = Ae^{i\phi} \qquad \text{Relative phase} \leftrightarrow \text{cross-phase}$$

$$\hat{v} = B \qquad \text{Velocity amplitude}$$

$$\hat{v} = B \qquad \text{Velocity amplitude}$$

$$\partial_{t}\tilde{\phi} + \tilde{v} \cdot \nabla \tilde{\phi} + \langle v(r) \rangle \cdot \nabla \tilde{\phi} - D\nabla^{2}\tilde{\phi} - \frac{2D}{A} \nabla A \cdot \nabla \tilde{\phi} = 0$$

$$\text{NL scattering shearing}$$

$$\partial_{t}A + \tilde{v} \cdot \nabla A + \langle v(r) \rangle \cdot \nabla A + D(\nabla \tilde{\phi})^{2}A - D\nabla^{2}A = -B\frac{d}{dr}\langle P \rangle$$
Damping by phase fluctuations

Phase Correlation Time

• Stochastic advection:

$$\frac{1}{\tau_{ck}} = \vec{k} \cdot D_{\phi} \cdot \vec{k} + k^2 D$$

 $D_{\phi} = \sum_{k\prime} \tau_{ck\prime} \, |\tilde{v}_{\perp k}'|^2$

• Stochastic advection + sheared flow:

$$\frac{1}{\tau_{ck}} \approx \left(k_{\perp}^2 \left(D_{\phi} + D \right) \langle v_{\perp} \rangle'^2 \right)^{1/3}$$

➔ Coupling of radial scattering and Shearing shortens phase correlation

- → Strong $\langle V_E \rangle'$ beneficial
- Parallel conduction + diffusion:

$$\frac{1}{\tau_{ck}} \approx \left[\frac{\hat{s}^2 k_\perp^2}{(Rq)^2} \, \chi_\parallel \left(D_\phi + D \right) \right]^{1/2} \label{eq:tauchorserv}$$

→ Coupling of radial diffusion and conduction shortens phase correlation

What is actually known about fluctuations in relative phase?

• For case of P.-B. turbulence, a broad PDF of phase correlation times is observed. Further studies needed, especially 1) V_E effects, 2) EHO synergy

Implications for: i) Bursts vs Turbulence ii) Threshold

Key: Peaked (coherent) vs Flat (stochastic) growth spectrum

Bursts, Thresholds

- P.-B. turbulence can scatter relative phase and so reduce/limit growth of P.-B. mode to large amplitude
- Relevant comparison is:

 γ_k^L (linear growth) vs $\frac{1}{\tau_{ck}}$ (phase de-correlation rate)

- Key point: Phase scattering for mode \vec{k} set by 'background modes \vec{k}' ' i.e. other P.-B.'s (or micro-turbulence) \rightarrow where from?
 - \rightarrow is the background strong enough?? $\leftarrow \rightarrow$ profile of excitation!

0.07 0.06 a=2.17 (a) a=2.23 0.05 u=2.29 0.04 ⊽ 0.03 a=2.35 **P-B turbulence** a=2.44 0.02 $\gamma(n)\tau_c(n) < \ln 10$ 0.01 0.00 0.12 $\alpha = 2.29$ (b) n=0 n=25 0.10 n=5 n=30 0.08 d/²¹ d0 0.06 n=35 n=10 n=15 n=40 n=45 n=20 **Isolated ELM crash** 0.04 0.02 Onit $\gamma(n)\tau_c(n) > \ln 10, n = n_{dom}$ 0.00 0.12 α=2.44 (c) n=0 n=25 0.10 $\gamma(n)\tau_c(n) < \ln 10, n \neq n_{dom}$ n=5 n=30 0.08 0.06 00 00 00 n=35 n=10 n=15 n=40 n=20 n=45 0.04 0.02 0.00 0.15 2 δφο P-B turbulence growth rate -2n=20. δø =20 /4 -4 ELM crash 2 δφ 0

400

0.00

0

10

20

³⁰ n

40

50

60

n=20. δα

1=20 BF

n

100

200 t (τ_A) 300

The shape of growth rate spectrum determines burst or turbulence

Modest $\gamma(n)$ Peaking \rightarrow P.-B. turbulence

Weak radial extent •

Stronger Peaking $\gamma(n) \rightarrow$ ELM Crash

- ELM crash is triggered
- Wide radial extension

$$\alpha = -2\mu_0 R P_0' q^2 / B^2$$

$\gamma(n)$ Peaking VERY Sensitive to Pressure Gradient

Filamentary structure may not correspond to that of the most unstable mode, due nonlinear interaction

□ Triggering and the generation of filamentary structure are different processes!

- ✓ ELM is triggered by the most unstable mode;
- ✓ Filamentary structure depends on both linear instability and nonlinear mode interaction.

Criterion for the onset of ELMs $\gamma > 0$ is replaced by the nonlinear criterion

 $\gamma > \gamma_c \sim 1/\tau_c$

- γ_c is the critical growth rate which is determined by nonlinear phase scattering by background turbulence
- N.B. 1 / au_c and thus γ_{crt} are functionals of $\gamma_L(n)$ peakedness

Partial Summary

- Multi-mode P.-B. turbulence or ~ coherent filament formation can occur in pedestal
- Phase coherence time is key factor in determining final state and net P.-B. growth
- Phase coherence set by interplay of nonlinear scattering with 'differential streaming' in \hat{P} response $\rightarrow V'_E$ highly favorable
- Key competition is γ_L vs 1 / $\tau_c \rightarrow$ defines effective threshold
- Peakedness of $\gamma(n)$ determines burst vs turbulence

- So, is this relevant to <u>turbulent</u> QH state?
- Appears <u>yes</u>:

Reconciles Turbulence (microscopic) Absence of ELM burst/collapse

- Exploration of strong $\langle V_E \rangle'$ regimes should only strengthen case, by shortening τ_c by increased phase scattering
- Larger number of modes in turbulence increases phase scattering

Towards a Unified Scenario (?!)

- Is there a connection between EHO/coherent and turbulent state?
- Elements:

• Really: locking vs scattering

• Considerations suggest:

States are not exclusionary. May be synergistic.

<u>So</u>

- ExB shear can help by phase locking or/and phase scattering
- (Strongly) coherent and stochastic phase states are clear limits
- \leftarrow > What macro control parameters set $\gamma(n)$ spectral structure?

Things to Pursue

- Separate ExB effects i.e.
 Modelling + Experiment
 Phase
 Response Function
- Characterize turbulence/fluctuations I Long, $k_{\perp}\rho \ll 1$ Short, $k_{\perp}\rho \sim 1$ content
- Characterize phase scattering rates by fluctuation measurements i.e. $\delta \phi \rightarrow \tau_c$, Δ etc. Is $k_{\perp} \rho < 1$ scattering sufficient to regulate PB? Or Is process multi-scale?
- Characterize transitions between different types OH → changes in fluctuations

BACK UP

ELMs can be controlled by reducing phase coherence time

- ELMs are determined by the product $\gamma(n)\tau_c(n)$;
- Reducing the phase coherence time can limit the growth of instability;
- Different turbulence states lead to different phase coherence times and, thus different ELM outcomes

- Scattering field
- 'differential rotation' in \hat{P} response to \hat{v}_r
 - \rightarrow enhanced phase de-correlation

Knobs:

- ExB shear
- Shaping
- Ambient diffusion
- Collisionality

Mitigation States:

- QH mode, EHO
- RMP
- SMBI

